Quadratic transportation cost inequality for scalar stochastic conservation laws
نویسندگان
چکیده
In this paper, we established a quadratic transportation cost inequality for scalar stochastic conservation laws driven by multiplicative noise. The doubling variables method plays an important role.
منابع مشابه
Scalar conservation laws with stochastic forcing
We show that the Cauchy Problem for a randomly forced, periodic multi-dimensional scalar first-order conservation law with additive or multiplicative noise is well-posed: it admits a unique solution, characterized by a kinetic formulation of the problem, which is the limit of the solution of the stochastic parabolic approximation.
متن کاملScalar conservation laws with rough (stochastic) fluxes
We develop a pathwise theory for scalar conservation laws with quasilinear multiplicative rough path dependence, a special case being stochastic conservation laws with quasilinear stochastic dependence. We introduce the notion of pathwise stochastic entropy solutions, which is closed with the local uniform limits of paths, and prove that it is well posed, i.e., we establish existence, uniquenes...
متن کاملOn a Quadratic Functional for Scalar Conservation Laws
We prove a quadratic interaction estimate for approximate solutions to scalar conservation laws obtained by the wavefront tracking approximation or the Glimm scheme. This quadratic estimate has been used in the literature to prove the convergence rate of the Glimm scheme. The proof is based on the introduction of a quadratic functional Q(t), decreasing at every interaction, and such that its to...
متن کاملLarge Deviations Principles for Stochastic Scalar Conservation Laws
Large deviations principles for a family of scalar 1 + 1 dimensional conservative stochastic PDEs (viscous conservation laws) are investigated, in the limit of jointly vanishing noise and viscosity. A first large deviations principle is obtained in a space of Young measures. The associated rate functional vanishes on a wide set, the so-called set of measurevalued solutions to the limiting conse...
متن کاملA Criterion for Talagrand’s Quadratic Transportation Cost Inequality
Abstract. We show that the quadratic transportation cost inequality T2 is equivalent to both a Poincaré inequality and a strong form of the Gaussian concentration property. The main ingredient in the proof is a new family of inequalities, called modified quadratic transportation cost inequalities in the spirit of the modified logarithmic-Sobolev inequalities by Bobkov and Ledoux [6], that are s...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Mathematical Analysis and Applications
سال: 2021
ISSN: ['0022-247X', '1096-0813']
DOI: https://doi.org/10.1016/j.jmaa.2021.125230